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AbstracL A simple expression for the effective dielectric constant of a symmetric two- 
component composite (aggregate topology) is presented and interpreted in terms of the Bergman 
spearal representation. 

1. Introduction 

The determination of effective material constants of composites has been a problem of 
essential technical and scientific interest for a long time. Outstanding contributions have 
been provided e.g. by Maxwell-Garnett [I]. by Bruggeman [2], by Wiener [3], by Hashin 
and Shtrikman [4] and by Bergman [5]. To date, however, there still do not exist generally 
accepted mixing formulae, i.e. expressions e.g. for the dielectric constants of composites as 
functions of those of their components and their concentrations, that are able to describe 
reasonably well experimental resuits on certain not too special classes of composites. 

In [6] the author proposed such expressions for different typical microstructures on 
the basis of simple interpolations between exactly known limits and applied them to the 
calculation of frequency dependent properties [7]. 

It was not proved, however, that these expressions obey the analytic properties and 
general requirements demanded by the Bergman spectral representation [SI. 

In this paper we concentrate on the sufficiently general case of the dielectric constant 
of a symmetric two-component composite. The expression obtained in [6] is first rederived. 
It is then proved that it has a Bergman spectral representation, the spectral function of 
which satisfies all known requirements. It is shown further that the easiest form of an 
interpolation of the spectral function between its exactly known limits at very low and very 
high concentrations results in the same expression as derived in [6]. In addition, possible 
generalizations and consequences for the Dc conductivity and for percolating systems are 
discussed. 

2. Dielectric constant of a symmetric two-component composite 

As in [5] we define the effective dielectric constant of an inhomogeneous material by 

W )  = 49 (1) 
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where (...) denotes the volume average of a given quantity. (E) and ( D )  are given by 

( E )  = (1 - ~ ) ( E I )  + c(Ez) 

(D)  = (1 - C)EI (El) + c~z(E2)  
(2) 

with (DI), (I$). (D1) and ( 0 2 )  being the volume averages over the volumes VI and V2 
of the two types of constituent with dielectric constants E )  and EZ, and c = V ~ / ( f i  + VZ). 

Hence, with (E) 11 (El )  11 (a) we obtain 

as an exact result. The mean field ratio ( E z ) / ( E l )  is acomplicated and, in general, unknown 
expression, which depends on the special structure of a given sample. 

This ratio can be calculated exactly in the limit of one single inclusion with the form 
of an ellipsoid, see, e.g. [8]. Representing the limits c -+ 0 and c -+ 1 of a symmetric 
composite by spherical inclusions of vanishing number and increasing distance we have 

for c + 0 (4) 
3EI 

(EZ)/(EI) = 

and 

(EI)/(EZ) = 3Ez for c -+ I . (5 )  

The obvious generalizations to non-spherical inclusions with or without randomly 

From (3)45)  the effective dielectric constant E together with its derivative E' = d&/dc 

E I d =  E l  E I d =  €2 (6) 

distributed orientations are discussed, e.g. in [ 5 ] ,  [6] and [9]. 

are exactly known in the limits c = 0 and c = 1: 

and 

One possible simple interpolation between these boundary values can be obtained from 
the (3, 2) Pad6 approximation 

ff + pc + YCZ 
E =  

1 +6c 
where the constants a, p, y and 8 have to be chosen in such a way that (6) and (7) are 
fulfilled. 

The result is 

(9) 
Ei + 4C&i (E2 - €1)/(2&1 + &z) + 2C2(E2 -&I)'/(% -+ E2) 

E =  
1 + C(Q - E1)/(2EI + .2) 

which is exactly the expression given in [6]. 
We remark that the equations (4H7) and, hence, (9) contain all the exact knowledge 

of first order in c or (1 -c), respectively and no assumptions about higher-order terms. 
An exact knowledge of e.g. the next order cz or (1 - c ) ~ ,  respectively, would require the 
performance of an infinite number of calculations for two inclusions at all possible distances. 
Therefore, any expression 'improved' compared to (9) for the effective dielectric constant 
E is necessarily approximative or includes phenomenological parameters. 
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3. Bergman spectral representation of the dielectric constant 

Introducing the variables f = 1 - E / E I  and s = (1 - s Z / q ) - I  it was proved by Bergman 
[5] that for any given sample f(s) has the spectral representation 

with a positive spectral function g(s). which obeys, in the case of isotropic or cubic rotational 
symmetry, the equations 

g(s)ds = c  - A 
0 

I 

1 
3 

sg(s) dr = -c(l - c)  

0 

and the inequality 

(see also [10]-[12]). 
Equation (9) expressed in the variables f and s gives 

2 2  1 c(1 -c) 1 
f(s) = -- + - 

I + C S  I + c  ~ - ( 1 + ~ ) / 3 '  

(14) is of the form (10) with 

(14) 

The equations ( 1 1 )  and (12) and the inequalities (13) are also fulfilled by (14). Hence, 
(9) has a correct Bergman spectral representation. 

4. 
function 

It is possible to obtain (9) alternatively by a simple interpolation of the spectral function 
g(s) between its values in the limits c + 0 and c -+ 1 ;  as follows. 

The spectral function g(s) is closely related to the internal surface mode spectrum of 
the sample, see e.g. 151, ill] and [12]. This mode spectrum is determined by the AC 

Rederivation of the dielectric constant by interpolating the Bergman spectral 
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dielectric function &(a), which is given by the same expression as the dielectric constant E 

if retardation effects are neglected. 
For spherical inclusions in the limits c + 0 and c + 1 these modes are the Frohlich 

modes at 2Et(o) + E&) = 0 corresponding to s = 4, and at 2~2(w) + &,(a) = 0 
corresponding to s = 7. respectively. Hence, g(s) - c8(s - 4) and g(s) - ( I  - c)S(s - 4 )  
in these limits. The prefactors c and (1 - c) ensure that the mode strengths vanish for c --f 
0 and c + 1, respectively. 

The easiest interpolation between these limits without further information or assumptions 
is given by 

2 

g(s) - c(1- c)8(s - T) 
From (12) we then get 

and from (11) 

The results (19) and (18) are identical to (15) and (16) obtained from expression (9). 
the Pad6 approximation used for its derivation being equivalent to a linear interpolation of 
the spectral function g(s) between the limits c --f 0 and c + 1. 

5. Discussion 

The dielectric constant calculated from (9) lies for all 0 < c < 1 between the limits obtained 
by Hashin and Shtrikman [4] for isotropic composites, see [6]. Its value is larger than those 
obtained from e.g. the Bruggeman 121, Looyenga [13] or Lichtenecker [I41 theories and is 
in better agreement with results of numerical simulations [ E ] ,  see figure 1. The remaining 
difference may be due to the fact that multipole fields are not taken into account by (9). 
This interpretation is supported by the fact that the results of [ 151 violate the upper Hashin- 
Shtrikman limit (based on the dipole approximation) for e.g. c = 0.3 and &I < 30. 

The interpolation scheme presented here results in a 8-like spectral function 
comesponding to only one surface mode inside a given sample for any c. In reality there 
occurs, of course, a spectrum of many modes corresponding to the special geometry and, 
hence, a continuous spectrum for infinite samples or after ensemble averaging. It would 
be easy to generalize the expression (18) to the case of a spectrum with finite half-width 
(terminated at s = 0 and s = 1) and to introduce some bending of its centre of gravity from 
the straight line between c = 0 and c = 1. In this way the agreement with experimental 
results and/or with computer simulations could be improved. Such a procedure requires, 
however, the introduction of purely phenomenological parameters, which cannot be justified 
theoretically without drastic approximations and, possibly. harmful consequences. In the 
case of the Bruggeman theory [2], for example, the exact boundary conditions (7) are 
violated near the frequencies of the Frohlich modes, see [7], and also [ 161 for the discussion 
of a related problem. 
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Figure 1. Comparision of the results of the 
Maxwell-GameD (I), Lichtenecker (2). Bruggeman (3). 
Looyenga (4) and the present (5)  expressions for the ef- 
fective dielectric function compared with the computer 
simulation results of Stolzle el al (6) for c = 0.3 and 
81 = I as functions of the second component €2. The 
data of Stdlele [I51 are fitted by their analytical expres- 
sion E" = ( I  - c)  E? + cei with n(c) = 1 . 6 ~  + 0.265 
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Figure 2. Frequency dependence of the TO and Lo 
modes (maxima of Im E and Im (-a) respectively) 
of a percalating metal-insulator mixtum (ET = 1. €2 = 
I - W ~ ~ / W ( O  t iy). ~/o,I = 0.01 and CO = 0.2). OFI 

and w are the Frdhlich modes for c -t 0 and c + I .  

The constant A in the Bergman spectral representation is connected with the DC 
conductivity of a composite build-up from a conducting component ET and a non-conducting 
component E ,  by [10]-[12] 

which, in the case of brine-saturated rocks, obeys Archie's empirical law ([17], see also 
[18] for discussion) u/u2 =a? with a being of the order of unity and m = 1.3, . . . ,4. 

If we write A = CA then A can be interpreted as the relative fraction of component 
2 that contributes to the DC conductivity, i.e. isolated regions. closed conducting paths etc 
decrease 1121. In our case (9) we have 

A = -  2c2 4 2 2  
l + c  e-0 

corresponding to a = 2 and m = 2, and 

- 2c A = -  
I + c  

i.e. the relative fraction of the component 2 contributing to DC conductivity is enhanced for 
all c compared with a simple linear behaviour 2 = c. 

(9) as a smooth interpolation between the limits c -+ 0 and c -+ 1 naturally does not 
result in a percolation threshold CO with U 0 for c 6 CO. Systems with percolation require 
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where b’(c - CO) = 1 for c > CO and 0(c - CO) = 0 otherwise. 
Introducing such a form of A = uJu2 together with the one-mode approximation 

g(s) = BS(s - SO), the parameters a, p ,  y and SO can be obtained from (11) and (12) 
under the additional requirements SO -+ f for c + 0 and SO + f for c + 1. 

This yields 

3 y = z(1 -CO) 

resulting in a dielectric constant of a composite with a percolation threshold, which can 
be used e.g. for the calculation of frequency-dependent properties. An example for the 
frequency dependence of the To and Lo modes of a metal-insulator composite is given in 
figure 2. 
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